
To Promote the Progress	 of Science and Useful Arts

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2)
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the
Maintenance Fee Notice on the inside of the cover.

The Director
of the United States Patent and Trademark Office has received

an application for a patent for a new and useful invention. The title
and description of the invention are enclose. The requirements
of law have been complied with, and it has been determined that

a patent on the invention shall be granted under the law.

Therefore, this United States

Acting Director of the United States Patent and Trademark Office

Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

(54) METHODS AND SYSTEMS FOR
GENERATING LOGICAL QUERIES

(71) Applicant: Noetica Ltd., Crawley (GB)

(72) Inventor: Danny Singer, Robertsbridge (GB)

(73) Assignee: Noetica Ltd., Crawley (GB)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 17/995,804

(22) PCT Filed: Apr. 9, 2021

(86) PCT No.: PCT/GB2021/050880

§ 371 (c)(1),
(2) Date: Oct. 7, 2022

(87) PCT Pub. No.: WO2021/205186

PCT Pub. Date: Oct. 14, 2021

(65) Prior Publication Data

US 2023/0153297 A1 May 18, 2023

(30) Foreign Application Priority Data

Apr. 9, 2020 (GB) 2005319

(51) Int. Cl.
G06F 16/242 (2019.01)
G06F 16/2455 (2019.01)

(52) U.S. Cl.
CPC G06F 16/2428 (2019.01); G06F 16/242

(2019.01); G06F 16/24558 (2019.01)

(58) Field of Classification Search
CPC G06F 16/221; G06F 16/278; G06F 16/254;

G06F 16/2428; G06F 16/2423; G06F
16/24558; G06F 16/242

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,003,034 A 12/1999 Tuli
6,326,962 B1 12/2001 Szabo

11,392,632 B1 * 7/2022 Nelson G06F 16/438
2004/0202308 A1 * 10/2004 Baggenstoss H04M 3/5175

379/265.06
2005/0283466 A1 * 12/2005 Dettinger G06F 16/2425
2006/0200438 A1 * 9/2006 Schloming G06F 16/284

(Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion received in PCT/

GB2021/050880, mailed Jun. 8, 2021.

Primary Examiner — Vaishali Shah

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear, LLP

(57) ABSTRACT

A computer-implemented method for generating and send-
ing a machine processable form of a logical query, compris-
ing: providing, on a display device of a computing device,
two or more shapes that can be manipulated by a user to
form a diagram representing a logical query, wherein the two
or more shapes correspond to respective data sets; for each
shape of the two or more shapes, determining, by the
computing device, one or more highest intersection cardi-
nality regions within the shape; based on the one or more
highest intersection cardinality regions, generating, by the
computing device, a machine processable form of the logical
query; and sending, by the computing device, the machine
processable form of the logical query to a query processing
engine.

16 Claims, 5 Drawing Sheets

US012346313B2

(12) United States Patent (10) Patent No.: US 12,346,313 B2
Singer (45) Date of Patent: Jul. 1, 2025

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0271505 A1 11/2006 Vierich et al.
2012/0221553 A1 * 8/2012 Wittmer G06F 16/904

707/E17.014
2013/0086057 A1 * 4/2013 Harrington G06F 16/951

707/E17.014
2015/0339827 A1 * 11/2015 Oka G06T 7/13

382/199
2016/0092557 A1 * 3/2016 Stojanovic G06F 16/248

707/723
2018/0285399 A1 * 10/2018 Altizer G06F 16/2453
2019/0121826 A1 4/2019 LeVell
2020/0401598 A1 * 12/2020 Mehrotra G06F 16/2282
2021/0406343 A1 * 12/2021 Sabra G06F 16/1748

* cited by examiner

US 12,346,313 B2
Page 2

U.S. Patent Jul. 1, 2025 Sheet 1 of 5 US 12,346,313 B2

U.S. Patent Jul. 1, 2025 Sheet 2 of 5 US 12,346,313 B2

U.S. Patent Jul. 1, 2025 Sheet 3 of 5 US 12,346,313 B2

U.S. Patent Jul. 1, 2025 Sheet 4 of 5 US 12,346,313 B2

U.S. Patent Jul. 1, 2025 Sheet 5 of 5 US 12,346,313 B2

METHODS AND SYSTEMS FOR

GENERATING LOGICAL QUERIES

FIELD OF THE INVENTION

The invention relates generally to methods and systems
for generating machine processable logical queries, and
more particularly to methods and systems for generating
machine processable logical queries based on manipulation
of a diagram such as an Euler diagram or Venn diagram or
similar.

BACKGROUND OF THE INVENTION

Predicate logic is widely used in computing to describe
things such as database queries, spreadsheet formulae, busi-
ness intelligence tools, customer contact or marketing cam-
paign creation and management.

Predicate logic is generally conveyed as a database query
or similar using a high level programming language such as
database Structured Query Languages (SQL), macro or C#,
which requires the user to possess a certain level of technical
skill.

Diagrams such as Euler diagrams and Venn diagrams or
similar can be used to provide a visual representation of
predicate logic using intersecting shapes. For example, such
a diagram might consist of two intersecting circles, one
representing the set of integers greater than five and the other
representing the set of integers less than 10. The area where
the two circles overlap represents the intersection of these
two sets, i.e. the set of integers greater than five and less than
ten.

Unlike database queries, such diagrams are easily under-
stood and manipulated by users that do not possess technical
skill in predicate logic or SQL, meaning unskilled users can
use these diagrams to easily formulate visual representations
of predicate logic.

There is a need for systems and methods that can correctly
interpret the predicate logic represented by visual diagrams
and convert it into a machine processable logical query, such
as a database query or similar.

SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is
provided a computer-implemented method for generating
and sending a machine processable form of a logical query,
comprising: providing, on a display device of a computing
device, two or more shapes that can be manipulated by a user
to form a diagram representing the logical query, wherein
the two or more shapes correspond to respective data sets;
for each shape of the two or more shapes, determining, by
the computing device, one or more highest intersection
cardinality regions within the shape; based on the one or
more highest intersection cardinality regions, generating, by
the computing device, a machine processable form of the
logical query; and sending, by the computing device, the
machine processable form of the logical query to a query
processing engine.

This method assists a user in the technical task of gener-
ating a logical query. This allows the user to extract data
from a database or similar query processing engine without
requiring technical skill in predicate logic and programming.

The method also enables a computing device to identify
the regions of interest in the diagram representation gener-
ated by the user without the need for an explicit indication

from the user, thereby reducing the number of steps the user
must perform to generate a query.

Since the underlying query can be manipulated graphi-
cally, the method provides for the faster and more efficient
manipulation of data, regardless of the technical competence
of the user. That is, even if the user was technically com-
petent the graphical and visual mechanism is both a faster,
more efficient and more accurate way of accessing and/or
manipulating underlying data; thus providing more than a
simplification of a user’s actions and an improved mecha-
nism of accessing and manipulating data. Moreover, since
the data is queried visually, the computer is responsible for
the data selection facilitating a more accurate query and
reducing processing load.

In this regard, logical queries can also be pre-loaded (i.e.
the data initially queried before the final shape is chosen)
based on the movement of the shapes or the chosen shapes,
thus significantly reducing and improving data retrieval and
processing speed.

The method provides for faster and more efficient data
manipulation regardless of the technical competence of the
user in that the use of the shapes rather than directly
inputting SQL queries reduces the number of user interac-
tions required to make (or change) a query. Further the
maneuvering of shapes visually is a dramatically faster
process than the typing of a query and less likely to result in
mistakes or errors.

The available data can be visually presented and a selec-
tion chosen immediately, without any detailed knowledge of
the structure of the data. For example, the data can be
selected irrespective of the table structure of a relational
database.

A computer performing the method becomes an improved
computer as it becomes more programmable; it is quicker
and easier to manipulate data, such as initiating the move-
ment of data, stored on the computer. There is a direct effect
on the underlying data stored on the computer. The method
directly results in an improved continued and guided human-
machine interaction process assisting the user in the tech-
nical task of accessing and manipulating data, for example
as stored in a relational database.

The intersection cardinality of a region within a shape is
equal to the number of other shapes that intersect the shape
in that region. The highest intersection cardinality regions
within a shape are the regions having the largest intersection
cardinality values, i.e. are the regions within a shape which
are overlapped by the largest number of other shapes.

The machine processable form of the logical query may
be a database query, such as a SQL query. The machine
processable form of the logical query may alternatively be in
another form such as a logical query for a search engine or
a spreadsheet formula.

The query processing engine may be a database. The
query processing engine by alternatively be another process-
ing engine such as a search engine or a spreadsheet.

Preferably, determining the one or more highest intersec-
tion cardinality regions within a given shape comprises:
generating, by the computing device, an intersection set, the
intersection set comprising all other shapes that intersect the
given shape; determining, by the computing device, a high-
est intersection cardinality value of the given shape; gener-
ating, by the computing device, a highest intersection car-
dinality index set, the highest intersection cardinality index
set comprising all subsets of the intersection set that have a
cardinality equal to the highest intersection cardinality
value; and identifying, by the computing device, elements of

US 12,346,313 B2

1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

the highest intersection cardinality index set that contain
shapes having a common intersection with each other and
with the given shape.

The highest intersection cardinality value of a shape is the
intersection cardinality of the region of the shape that has the
largest intersection cardinality. For example, if a shape has
one region which is overlapped by one shape (intersection
cardinality of one), and another region which is overlapped
by two shapes (intersection cardinality of two), then the
highest intersection cardinality value of the shape will be
two.

Preferably, the method further comprises: generating, by
the computing device, an n×n array, wherein n represents a
total number of shapes, wherein each row and each column
of the array corresponds to a respective shape, and wherein
an element of the array has value 1 if respective shapes
corresponding to the row and column of the element inter-
sect, and value 0 otherwise; and wherein generating the
intersection set comprises: determining, by the computing
device, a row corresponding to the shape; identifying, by the
computing device, elements of the row that have value 1;
determining, by the computing device, respective shapes
corresponding to respective columns of the identified ele-
ments; and generating, by the computing device, a set
comprising the respective shapes (in other words, thus
generating the collection of shapes that intersect the given
shape).

The array may be a matrix, a table, or any other data
structure capable of representing a two-dimensional array.
Although the values in the table are given as 0 and 1, any
equivalent values capable of binary representation could be
used.

Preferably, determining the highest intersection cardinal-
ity value of the shape comprises: (i) determining, by the
computing device, utilising the n×n array, an intersection
value of the shape, wherein the intersection value is equal to
the number of shapes that intersect with the shape; (ii)
setting, by the computing device an index equal to the
intersection value; (iii) generating, by the computing device,
an index set comprising all subsets of the intersection set that
have a set cardinality equal to the index; (iv) for each
element of the index set, determining, by the computing
device, whether all shapes in the element intersect with the
shape at a common intersection; and (v) if all shapes in the
element intersect with the shape at a common intersection,
setting, by the computing device, the highest intersection
cardinality value equal to the index, and otherwise decreas-
ing, by the computing device, the value of the index by 1 and
repeating steps (iii) and (iv).

The set cardinality of a set is the number of elements in
the set. This is distinct from intersection cardinality.

Preferably, identifying elements of the highest intersec-
tion cardinality index set that contain shapes having a
common intersection with each other and with the shape
comprises: iterating, by the computing device, through the
elements of the highest intersection cardinality index set;
and for each element, determining, by the computing device,
whether all shapes in the element intersect with the shape at
a common intersection.

Preferably, the method further comprises: constructing,
by the computing device, a set theory expression V which
initially is equal to the empty set; wherein determining one
or more highest intersection cardinality regions within the
shape further comprises: for each determined highest inter-
section cardinality region within the shape, appending, by
the computing device, a term


S j∈σ

S j ⋂ Si

to V such that

V = V ⋃ 
S j∈σ

S j ⋂ Si

where: Si represents a data set corresponding to the shape; σ
represents a set of data sets corresponding to shapes that
intersect the shape at the highest intersection cardinality
region; and Sj represent respective data sets corresponding to
respective elements of σ.

Preferably, generating the machine processable form of
the logical query comprises, subsequent to determining the
one or more highest intersection cardinality regions within
the shape, converting, by the computing device, the set
theory expression V into the machine processable form of
the logical query.

Preferably, the method further comprises determining, by
the computing device, whether the term already exists in V
prior to the appending, wherein the term is only appended to
V if an identical term does not already exist in V.

Preferably, the method further comprises determining, by
the computing device, all intersection regions between the
two or more shapes.

Preferably, the method further comprises shading, on the
display device, the one or more highest intersection cardi-
nality regions.

According to another aspect of the invention, there is
provided a computer-implemented method of retrieving data
from a database, comprising: using the method of any
preceding claim to generate, by a computing device, a
machine processable form of a logical query and send, by
the computing device, the machine processable form of the
logical query to the query processing engine, wherein the
machine processable form of the logical query is a database
query and the query processing engine is the database;
sending, by the computing device, the database query to the
database; receiving, at the database, the database query;
using the database query to retrieve, at the database, the data.

Preferably, the method further comprises sending the data
to a receiving device. Preferably, the method is used in a call
centre, wherein the data comprises one or more phone
numbers, and wherein the method further comprises using at
least one of the one or more phone numbers to make a phone
call.

Alternatively, the data may comprise one or more iden-
tifiers such as email addresses, IP addresses or phone num-
bers, and the method may further comprise using at least one
of the identifiers to send a message to one or more recipients
associated with the identifiers, such as a message alerting
recipients to an important local event or a warning. Such a
message may be sent simultaneously to multiple recipients.

According to a further aspect of the invention, there is
provided computing device for generating and sending a
machine processable form of a logical query, comprising: a
processor; and a display device; wherein the processor is
configured to perform the method of any of the first aspect.

According to yet another aspect of the invention, there is
provided a system for making logical queries, comprising: a
computing device configured to generate a machine process-
able form of a logical query and send the machine process-
able form of the logical query to a query processing engine

US 12,346,313 B2

3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

according to the method of the first aspect; a query process-
ing engine configured to: receive the machine processable
form of the logical query from the computing device; extract
data based on the machine processable form of the logical
query; and send the data to a receiving device; and a
receiving device configured to receive the data from the
query processing engine.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples of the present invention will now be described
in detail with reference to the accompanying drawings, in
which:

FIG. 1 illustrates in schematic form a system suitable for
implementing aspects of the invention;

FIG. 2 is a diagram representing a logical query;
FIG. 3 is another diagram representing another logical

query;
FIG. 4 is a flow diagram describing a method for gener-

ating and sending a machine processable form of a logical
query;

FIG. 5 shows in schematic form a data processing device
that is suitable for performing the functions of the compo-
nents of the system shown in FIG. 1.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description aspects of the invention are
described in the context of call centres. It will be appreciated
that the invention has applications in contexts outside of call
centres, specifically to any environment in which a logical
query is generated. Other exemplary applications include
generating search engine queries, filtering search results, and
generating spreadsheet formulae.

FIG. 1 shows an example system 100 suitable for imple-
menting embodiments of the present invention.

The system 100 includes a computing device 101 com-
municatively coupled to a query processing engine 102 such
as a database. The user computing device 101 may have a
user interface and one or more input devices, such as a
keyboard, mouse, touch screen or microphone. The com-
puting device 101 may be any suitable device that a user can
interact with, such as a personal computer, a tablet computer,
a smartphone, or a laptop computer, or even a virtual and/or
cloud based computer system.

This coupling between the computing device 101 and the
query processing engine 102 may be via a data connection,
for example the Internet or a private intranet. The user
computing device 101 is also cable of communicating with
one or more user equipments (UEs) 104 through an inter-
mediary 103.

The intermediary 103 may be a communications network,
the Internet, a private network, a telephone exchange, a
combination of these, or any other physical or virtual system
capable of providing communication between a user com-
puting device 101 and one or more UEs 104.

The UEs 104 may be mobile phones, smartphones, lan-
dline telephones, tablet computers, personal computers, lap-
top computers, notebook computers or any other suitable
user device.

Although the computing device 101 is illustrated with a
direct connection to the query processing engine 102,
embodiments are envisaged in which the communication
between the computing device 101 and the query processing
engine 102 is via the intermediary 103.

A user of the computing device 101 can use an input
device to manipulate one or more shapes displayed on the
user interface to form one or more diagrams representing a
logical query (for example an Euler diagram or a Venn
diagram or similar), such as those shown in FIG. 2 and FIG.
3.

As known to a person skilled in the art, Euler diagrams
and Venn diagrams have a collection of several shapes, each
shape representing a data set. These shapes are often circles
but can be any shape.

A data set, or more generally a set, is a collection of
elements typically defined through a mathematical expres-
sion, such as A={ n∈ ?n>5} (the set of all natural numbers
greater than five) or B={ n∈ ?n<10} (the set of all natural
numbers less than 10).

Relationships between data sets represented by the shapes
of an Euler diagram can be visualised through intersections
between the shapes. Using the example above, the intersec-
tion between shapes representing the sets A and B would be
the set A ∩B={ n ∈ ?n>5}∩{ n∈ ?n<10} ={ n ∈

?5<n<10} , i.e. all natural numbers greater than 5 and less
than 10. This would be represented by two shapes having a
single overlapping region. One of the shapes would repre-
sent set A (the numbers greater than 5), the other shape
would represent the set B (the numbers less than 10), and the
overlapping region would represent the numbers greater
than 5 and less than 10.

Unlike Euler diagrams, Venn diagrams require all pos-
sible intersections between shapes to be shown. For
example, an Euler diagram having two shapes representing
odd and even numbers respectively would not have these
shapes overlapping (as a number cannot be both odd and
even), whereas a Venn diagram would have these shapes
overlapping (with the intersection representing the empty set
of numbers that are both odd and even).

The diagram 200 in FIG. 2 has three overlapping shapes
201, 202, 203 representing three respective data sets. In this
example, shape 201 represents people having two or more
cars, shape 202 represents people living in Tunbridge Wells,
and shape 203 represents people who are homeowners.

Although the shapes 201-203 are all circles in this
example, any shapes could be used, such as ovals, squares,
or irregular shapes. In addition, the shapes can be different
from each other.

All of the shapes 201, 202, 203 overlap in a central
hatched region 204, which represents homeowners living in
Tunbridge Wells having two or more cars. This region 204
is referred to as the highest intersection cardinality region of
the diagram 200.

The intersection cardinality of a region within a shape is
equal to the number of other shapes that intersect the shape
in that region (i.e. excluding the shape in question). The
intersection cardinality of a given region is therefore one
less than the number of shapes that intersect at that region.
Three shapes intersect at region 204, so the intersection
cardinality of this region 204 is two.

In addition, shapes 201 and 202 intersect at a region 205,
shapes 201 and 203 intersect at a region 206, and shapes 202
and 203 intersect at a region 207. The region 205 represents
people having two or more cars living in Tunbridge Wells,
the region 206 represents homeowners living in Tunbridge
Wells, and the region 207 represents homeowners having
two or more cars. The intersection cardinality of each of
regions 205, 206 and 207 is one, because two shapes
intersect at each of these regions.

FIG. 3 shows a more complex example of a diagram 300
representing a logical query. Shapes 301-303 correspond to

US 12,346,313 B2

5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

shapes 201-203 respectively, and regions 304-307 corre-
spond to regions 204-207 respectively. The diagram 300 has
two additional shapes 308 and 309. Shape 308 represents
people owning a mansion, and shape 309 represents people
owning a supercar.

Region 310 therefore represents people living in Tun-
bridge Wells owning a mansion, and region 311 represents
people living in Tunbridge Wells owning a supercar.

Intersection regions 310 and 311 have intersection cardi-
nality one and are independent of each other and of inter-
section regions 304-306, i.e. they do not overlap any of these
intersections. Therefore, although the cardinality of regions
310 and 311 is less than that of region 304, these regions are
said to be included in the set of highest intersection cardi-
nality regions of the diagram 300. While region 304 is the
region of highest intersection cardinality within the shapes
301, 302 and 303, the regions 310 and 311 are respectively
the regions of highest intersection cardinality in shapes 308
and 309.

Each of the diagrams 200 and 300 represents a logical
predicate query. For the diagram 200, this query is:

Is resident of Tunbridge Wells AND Is homeowner AND
Owns more than one car.

For the diagram 300, this query is:
Is resident of Tunbridge Wells AND ((Is homeowner AND

Owns more than one car) OR Owns a mansion OR
Owns a supercar).

I.e. the data to be selected by the logical predicate queries
is corresponds to the set of highest intersection cardinality
regions (the shaded regions in FIGS. 2 and 3.)

Diagrams can therefore be used to formulate such logical
predicate queries by providing a user with a manipulatable
diagram on a display device such as a computer screen. The
user can select shapes corresponding to data sets of interest
and manipulate the shapes to construct the desired query.
This allows users to express complex predicate logic in a
simple to understand, purely visual manner.

Such logic is widely used in computer software to
describe things such as database queries (particularly the
WHERE clauses of such queries), spreadsheet formulae,
business intelligence tools, customer contact or marketing
campaign creation and management and many other appli-
cations.

To date, the only way in which predicate logic may be
conveyed to a computer system is through some type of
high-level programming language such as SQL, macro, or
C#. This requires the user to possess a certain level of
technical skill. The method of the present invention provides
users with a much more direct and intuitive manner of
expressing predicate logic so that the definition of such logic
becomes widely accessible to non-technical users.

While determining the regions where the shapes overlap
is relatively straightforward (for example, the overlapping
regions between circles can be determined geometrically
based on the location of the centre of each circle and the
radius of each circle), determining which intersection
regions are of interest (i.e. the set of highest intersection
cardinality regions—those that are shaded on FIGS. 2 and 3)
is a non-trivial task for a computing device to perform.

In the above diagram 300, once the user has constructed
the visual representation on a display device of the comput-
ing device 101, the computing device must identify the
highest intersection cardinality regions 304, 310 and 311 to
infer the user’s intended logical query. The computing
device 101 can then generate a machine processable form of
the logical query such as a database query and send it to a
query processing engine such as a database.

A method 400 for performing this procedure is outlined in
FIG. 4. At step 401, the user is provided with shapes that can
be manipulated to form a diagram representing a logical
query, such as an Euler diagram or Venn diagram or similar.
The user can create shapes representing the relevant data
sets, and manipulate them to form intersections representing
the logical query.

At step 402, the computing device 101 determines one or
more highest intersection cardinality regions in the diagram
created by the user. In order to do this, the computing device
101 analyses each shape of the diagram in turn and deter-
mines the highest intersection cardinality region within that
shape.

For example, for shape 301 of the diagram 300, the
highest intersection cardinality region is region 304, which
has intersection cardinality two; this is the region the com-
puting device 101 is seeking to identify when analysing
shape 301.

In order to identify the highest intersection cardinality
region within a shape, the computing device 101 first
generates an intersection set of all other shapes that intersect
that shape, and an intersection value corresponding to the
total number of shapes that intersect that shape.

In the case of shape 301, the intersection set would
contain shapes 302, 303, 308 and 309, and the intersection
value would be four (because four shapes intersect shape
301). Note that the intersection value is distinct from inter-
section cardinality.

In the following description, the term Si will be used to
denote the ith shape (i=1, . . . , n where n is the total number
of shapes). This term may also be used interchangeably to
denote the data set associated with the ith shape; the usage
will be clear from the context.

The intersection set and intersection value can be deter-
mined by analysing the layout of the shapes in the diagram
and generating an n×n array such that each row and each
column corresponds to one of the shapes S1, S2, . . . , Sn (e.g.
shapes 301, 302, . . . , 309) and the value of each element of
the array is either zero or one.

An element will be set to a value of 1 if the two shapes
(designated by the column and the row) intersect, and will
have a value of 0 if they do not intersect. The diagonal
elements (where a shape refers to itself) are ignored (top left
to bottom right diagonal).

The total of each row, represented by values (ϕi, gives the
intersection value for the associated shape Si, i.e. (ϕi repre-
sents the total number of shapes (distinct from Si which have
a non-empty intersection with Si.

For the diagram 300, this array would be:

S1 S2 S3 S4 S5 ϕi

S1 1 1 1 1 4
S2 1 1 0 0 2
S3 1 1 0 0 2
S4 1 0 0 0 1
S5 1 0 0 0 1

The array can also be used to determine the intersection
set, which is denoted as Σi={ St?1≤t≤n, t≠i, St∩Si≠Ø} , i.e. the
set containing all the shapes (distinct from Si) which have a
non-empty intersection with Si. The intersection set can be
obtained by determining the row corresponding to the shape
Si, identifying elements of that row having value one,
determining the respective shapes corresponding to the
respective columns of these elements, and generating a set

US 12,346,313 B2

7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

of these shapes. The intersection set for the shape S1 in the
above table is therefore the set of shapes { S2, S3, S4, S5} .

The intersection set Σi can then be used to determine the
highest intersection cardinality value for each shape Si and
the one or more highest intersection cardinality regions
within the shape (i.e. the intersection regions within the
shape having an intersection cardinality equal to the highest
intersection cardinality value).

The highest intersection cardinality value for a shape Si

can be determined by looping using an index p down from
(ϕi to zero. For each value of p, all subsets σ of the
intersection set Σi containing precisely p elements is gener-
ated. The number of such subsets is:

 φi
p
 = φi !

p !(φi - p)! .

For each subset σ, the computing device 101 checks
whether the intersection of all the shapes in the subset with
the shape Si itself is non-empty, i.e. whether all shapes in a
intersect with the shape Si at a common intersection. In other
words, the computing device 101 checks whether:

∃ σ ∈ 
i

p

j=1

p

S j ∈ σ ⋂ Si ≠ ϕ .

If such a set exists, the computing device 101 defines p as
the highest intersection cardinality value, determines all
subsets σ for which the intersection of all the shapes in the
subset σ with the shape Si itself is non-empty, and stops the
loop. The sets σ correspond to the highest intersection
cardinality regions within the shape Si.

Any shapes that are disjoint from all other shapes will
have a highest intersection cardinality equal to zero. In such
cases the set corresponding to the disjoint shape will be
included in the final expression in its entirety as the entire
shape is included in the highest intersection cardinality
region.

At this stage, the computing device 101 may optionally
shade all regions within the shape having an intersection
cardinality value equal to the highest intersection cardinality
value. At least one such shaded intersection exists by defi-
nition.

Subsequently to or concurrently with the determination of
the one or more highest intersection cardinality regions
within each shape, in step 403 the computing device 101
generates a machine processable form of the logical query
represented by the diagram.

This is achieved by constructing a set theory expression V
representing the logical query, which is initially the empty
set V=Ø. Once the computing device 101 has identified the
sets of shapes that intersect with the shape Si with an
intersection cardinality value equal to the highest intersec-
tion cardinality value, this intersection is appended to V such
that:

V = V ⋃ 
S j∈σ

S j ⋂ Si

where Si represents a data set corresponding to the shape, σ
represents a set of data sets corresponding to shapes that

intersect the shape Si at the highest intersection cardinality
region; and Sj represent respective data sets corresponding
to respective elements of σ.

To keep the expression V as simplified as possible, the
computing device 101 can optionally check before adding a
new element to the expression V that an identical element
does not already exist as part of the expression having been
added by a previous value of Si in a previous step of the loop.

For such shapes with intersection cardinality of zero, the
entire shape will be shaded, and the new element of V will
simply be added as V=V ∪ Si.

Once the computing device 101 has looped through all of
the shapes, the expression V will accurately describe the
visual representation of the logical query created by the user
by manipulating the diagram in step 401. V can subse-
quently be translated into a logic predicate or database query
simply by replacing the intersections with ANDs and the
unions with ORs. Furthermore, the predicate can be simpli-
fied by using Boolean algebra.

In the example of a database query, once the query has
been generated by the computing device 101 it can be sent
to the database to extract data based on the database query.
The extracted data can then be sent to a receiving device,
which could for example be the same computing device 101.

In the context of a call centre, the extracted data may be
the details of customers to be contacted, including one or
more phone numbers for each customer. The user of the
computing device 101 can then use one of the phone
numbers to make a phone call to a UE 104 of a customer, for
example via the intermediary 103.

Returning to FIG. 3, a full example of the process for
determining the one or more highest intersection cardinality
regions of the diagram 300 will now be described.

In this example, a user manipulates the diagram 300 to
represent the query:

Is resident of Tunbridge Wells AND ((Is homeowner AND
Owns more than one car) OR Owns a mansion OR
Owns a supercar)

as described above, where shape 301 represents people
living in Tunbridge Wells, shape 302 represents people
having two or more cars, shape 303 represents people who
are homeowners, shape 308 represents people owning a
mansion (e.g. this could be a house worth over £2,000,000),
and shape 309 represents people owning a supercar (e.g. this
could be a car worth over £100,000).

The user would create these conditions as shapes on the
diagram and drag them to the configuration shown in FIG.
3 to express the query.

The computing device will then create the following
array:

S1 S2 S3 S4 S5 ϕi

S1 1 1 1 1 4
S2 1 1 0 0 2
S3 1 1 0 0 2
S4 1 0 0 0 1
S5 1 0 0 0 1

where S1 corresponds to shape 301 (or the respective data
set), S2 corresponds to shape 302 (or the respective data set),
S3 corresponds to shape 303 (or the respective data set), S4

corresponds to shape 308 (or the respective data set), and S5

corresponds to shape 309 (or the respective data set).
Next, the computing device 101 defines the intersection

sets Σ1={ S2, S3, S4, S5} , Σ2={ S1, S3} , Σ3={ S1, S2} , Σ4={ S1}
and Σ5={ S1} .

US 12,346,313 B2

9 10

5

10

15

20

25

30

35

40

45

50

55

60

65

For each value of i between one and five, the computing
device 101 performs the following steps:

For each value of p between (ϕi and 1, descending:
Select each subset σ of Σi with precisely p elements and

check if all these elements have a common intersec-
tion and that intersection also intersects Si.

If YES, then set the highest intersection cardinality
value equal to p and add the intersection of the sets
in σ to the final expression V if not already in.
Continue for all other subsets a of elements in Σi with
precisely p elements and then move the next value of
i.

If NOT, move to the next, lower, value of p.
For the diagram in FIG. 3, this process will be as follows:
i=1:
p=4:

σ={ S2, S3, S4, S5}
The four sets in σ do not all have a common intersec-

tion with S1.
p=3:

σ={ S2, S3, S4}
The three sets in σ do not all have a common intersec-

tion with S1.
σ={ S3, S4, S5}
The three sets in σ do not all have a common intersec-

tion with S1.
σ={ S2, S3, S5}
The three sets in σ do not all have a common intersec-

tion with S1.
σ={ S2, S4, S5}
The three sets in σ do not all have a common intersec-

tion with S1.
p=2:

σ={ S2, S3}
The two sets in a do all have a common intersection

with S1 (i.e. region 304). Set ρ1=2 (ρ1 is the inter-
section cardinality for the shape S1).

V=S1 AND S2 AND S3

σ={ S2, S4}
The two sets in σ do not all have a common intersection

with S1.
σ={ S2, S5}
The two sets in σ do not all have a common intersection

with S1.
σ={ S3, S4}
The two sets in σ do not all have a common intersection

with S1.
σ={ S3, S5}
The two sets in σ do not all have a common intersection

with S1.
σ={ S4, S5}
The two sets in σ do not all have a common intersection

with S1.
i=2:
p=2:

σ={ S1, S3}
The two sets in a do both have a common intersection

with S2 (i.e. region 304). Set p2=2.
However, S1 AND S2 AND S3 already in V so no need

to add it again.
i=3:
p=2:

σ={ S1, S2}
The two sets in a do both have a common intersection

with S3 (i.e. region 304). Set p3=2.
However, S1 AND S2 AND S3 already in V so no need

to add it again.

i=4:
p=1:

σ={ S1}
The one set in a does have a common intersection with

S4 (i.e. region 310). Set p4=1.
V=(S1 AND S2 AND S3) OR (S1 AND S4)

i=5:
p=1:

σ={ S1}
The one set in a does have a common intersection with

S5 (i.e. region 311). Set p5=1.
V=(S1 AND S2 AND S3) OR (S1 AND S4) OR (S1

AND S5)
V is now an expanded version of the original condition to

be expressed. In other words:
V=(S1 AND S2 AND S3) OR (S1 AND S4) OR (S1 AND

S5)
=(“Lives in Tunbridge Wells” AND “Homeowner” AND

“Owns two or more cars”) OR
(“Lives in Tunbridge Wells” AND “Owns a mansion”)

OR
(“Lives in Tunbridge Wells” AND “Owns a supercar”).

Using simple Boolean algebra, this can be simplified for
conciseness. The same method can be used for colouring or
shading the intersections on screen as for generating the
expression, as both can be performed simultaneously. Each
time a new element is added to the expression, the corre-
sponding area on the screen can be coloured or shaded.

Although the above example has been given in relation to
generating a database query, it will be understood that the
same method can be used to generate any other logical
query, such as a query for a search engine or a spreadsheet
formula.

It will be apparent to a person skilled in the art that the
methods described herein are all suitable for implementation
by a data processing device. By way of example, FIG. 5
shows in schematic form a data processing device 500 that
is suitable for performing the functions of the computing
device 101, the query processing engine 102, the UEs 104 or
any other data processing device used in the above methods,
such a receiving device or a server of an intermediary
network.

The data processing device 600 includes a processor 501
for executing instructions. The instructions may be stored in
a memory 502, for example. The processor 501 may include
one or more processing units (e.g., in a multi-core configu-
ration) for executing instructions.

The processor 501 may also be operatively coupled to a
communication subsystem 503 such that data processing
device 500 is capable of communicating with a remote
device through a wired or wireless communications channel
508.

The processor 501 may also be operatively coupled to a
storage device such as storage medium via a storage inter-
face 504. The storage device can be any computer-operated
hardware suitable for storing and/or retrieving data. In some
cases, e.g. a remotely located storage medium, the commu-
nication subsystem 503 may perform the function of storage
interface 504 such that these two entities are combined.

The storage medium can be integrated in data processing
device 500, or it can be external to data processing device
500 and located remotely. For example, data processing
device 500 may include one or more hard disk drives as a
storage device.

The data processing device 500 may further comprise a
user interface or display device 505 such as a monitor or

US 12,346,313 B2

11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

touch screen, as well as a user input device 506 such as a
mouse, keyboard, touchpad, touchscreen or microphone.

The components 501-506 of the data processing device
500 may be able to communicate via one or more buses 507.

Having described aspects of the disclosure in detail, it will
be apparent that modifications and variations are possible
without departing from the scope of aspects of the disclosure
as defined in the appended claims. As various changes could
be made in the above constructions, products, and methods
without departing from the scope of aspects of the disclo-
sure, it is intended that all matter contained in the above
description and shown in the accompanying drawings shall
be interpreted as illustrative and not in a limiting sense.

The methods described herein may be encoded as execut-
able instructions embodied in a computer readable medium,
including, without limitation, a storage device, and/or a
memory device. Such instructions, when executed by a
processor, cause the processor to perform at least a portion
of the methods described herein.

The invention claimed is:
1. A computer-implemented method for generating and

sending a machine processable form of a logical query,
comprising:

providing, on a display device of a computing device, two
or more shapes that can be manipulated by a user to
form a diagram representing the logical query, wherein
the two or more shapes correspond to respective data
sets;

for each shape of the two or more shapes, automatically
determining, by the computing device, one or more
highest intersection cardinality regions within the
shape;

based on the one or more highest intersection cardinality
regions, generating, by the computing device, a
machine processable form of the logical query, wherein
the generating comprises translating a set theory
expression into the logical query;

constructing, by the computing device, the set theory
expression V which initially is equal to an empty set;
and

sending, by the computing device, the machine process-
able form of the logical query to query processing
engine,

wherein determining the one or more highest intersection
cardinality regions within the shape comprises:
generating, by the computing device, an intersection

set, the intersection set comprising all shapes that
intersect the shape;

determining, by the computing device, a highest inter-
section cardinality value of the shape;

generating, by the computing device, a highest inter-
section cardinality index set, the highest intersection
cardinality index set comprising all subsets of the
intersection set that have a cardinality equal to the
highest intersection cardinality value; and

identifying, by the computing device, elements of the
highest intersection cardinality index set that contain
shapes having a common intersection with each
other and with the shape, and

wherein the determining the one or more highest inter-
section cardinality regions within the shape further
comprises:
for each determined highest intersection cardinality

region within the shape, appending, by the comput-
ing device, a term


S j∈σ

S j ⋂ Si

to V such that:

V = V ⋃ 
S j∈σ

S j ⋂ Si

where:
Si represents a data set corresponding to the shape;
σ represents a set of data sets corresponding to shapes

that intersect the shape at the determined highest
intersection cardinality region; and

Sj represent respective data sets corresponding to
respective elements of σ.

2. The method of claim 1, wherein the method further
comprises:

generating, by the computing device, an n×n array,
wherein n represents a total number of shapes, wherein
each row and each column of the array corresponds to
a respective shape, and wherein an element of the array
has value 1 if respective shapes corresponding to the
row and the column of the element intersect, and value
0 otherwise; and

wherein generating the intersection set comprises:
determining, by the computing device, the row corre-

sponding to the shape;
identifying, by the computing device, elements of the

row that have value 1;
determining, by the computing device, respective

shapes corresponding to respective columns of the
identified elements; and

generating, by the computing device, a set comprising
the respective shapes.

3. The method of claim 2, wherein determining the
highest intersection cardinality value of the shape com-
prises:

(i) determining, by the computing device, utilising the
n×n array, an intersection value of the shape, wherein
the intersection value is equal to the number of shapes
that intersect with the shape;

(ii) setting, by the computing device an index equal to the
intersection value;

(iii) generating, by the computing device, an index set
comprising all subsets of the intersection set that have
a set cardinality equal to the index;

(iv) for each element of the index set, determining, by the
computing device, whether all shapes in the element
intersect with the shape at a common intersection; and

(v) if all shapes in the element intersect with the shape at
a common intersection, setting, by the computing
device, the highest intersection cardinality value equal
to the index, and otherwise decreasing, by the comput-
ing device, the value of the index by 1 and repeating
steps (iii) and (iv).

4. The method of claim 1, wherein identifying elements of
the highest intersection cardinality index set that contain
shapes having a common intersection with each other and
with the shape comprises:

iterating, by the computing device, through the elements
of the highest intersection cardinality index set; and

US 12,346,313 B2

13 14

5

10

15

20

25

30

35

40

45

50

55

60

65

for each element, determining, by the computing device,
whether all shapes in the element intersect with the
shape at a common intersection.

5. The method of claim 1, wherein generating the machine
processable form of the logical query comprises, subsequent
to determining the one or more highest intersection cardi-
nality regions within the shape, converting, by the comput-
ing device, the set theory expression V into the machine
processable form of the logical query.

6. The method of claim 1, further comprising determining,
by the computing device, whether the term already exists in
V prior to the appending, wherein the term is only appended
to V if an identical term does not already exist in V.

7. The method of claim 1, further comprising determining,
by the computing device, all intersection regions between
the two or more shapes.

8. The method of claim 1, further comprising shading, on
the display device, the one or more highest intersection
cardinality regions.

9. The method of claim 1, wherein the logical query is a
database query.

10. The method of claim 1, wherein the query processing
engine is a database.

11. The method of claim 1, wherein the diagram is an
Euler diagram or a Venn diagram.

12. A computer-implemented method of retrieving data
from a data store, comprising:

generating, according to the method of claim 1, by a
computing device, a machine processable form of a
logical query and sending, by the computing device, the
machine processable form of the logical query to the
query processing engine, wherein the machine process-

able form of the logical query is a data store query and
the query processing engine is the data store;

receiving, at the data store, the data store query; and
retrieving, at the data store, the data based on the data

store query.
13. The method of claim 12, further comprising sending

the data to a receiving device.
14. The method of claim 12, wherein the method is used

in a call centre, wherein the data comprises one or more
phone numbers, and wherein the method further comprises
making a phone call based on at least one of the one or more
phone numbers.

15. A computing device for generating and sending a
machine processable form of a logical query, comprising:

a processor; and
a display device;
wherein the processor is configured to perform the

method of claim 1.
16. A system for making logical queries, comprising:
a computing device configured to generate a machine

processable form of a logical query and send the
machine processable form of a logical query to a query
processing engine according to the method of claim 1;

a query processing engine configured to:
receive the machine processable form of a logical query

from the computing device;
extract data based on the machine processable form of

a logical query; and
send the data to a receiving device; and
a receiving device configured to receive the data from

the query processing engine.

∗ ∗ ∗ ∗ ∗

US 12,346,313 B2

15 16

5

10

15

20

25

30

		USPTO Director
	2025-06-30T11:30:03-0400
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

